Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
PLoS One ; 17(10): e0265478, 2022.
Article in English | MEDLINE | ID: covidwho-2079676

ABSTRACT

INTRODUCTION: The high proportion of SARS-CoV-2 infections that have remained undetected presents a challenge to tracking the progress of the pandemic and estimating the extent of population immunity. METHODS: We used residual blood samples from women attending antenatal care services at three hospitals in Kenya between August 2020 and October 2021and a validated IgG ELISA for SARS-Cov-2 spike protein and adjusted the results for assay sensitivity and specificity. We fitted a two-component mixture model as an alternative to the threshold analysis to estimate of the proportion of individuals with past SARS-CoV-2 infection. RESULTS: We estimated seroprevalence in 2,981 women; 706 in Nairobi, 567 in Busia and 1,708 in Kilifi. By October 2021, 13% of participants were vaccinated (at least one dose) in Nairobi, 2% in Busia. Adjusted seroprevalence rose in all sites; from 50% (95%CI 42-58) in August 2020, to 85% (95%CI 78-92) in October 2021 in Nairobi; from 31% (95%CI 25-37) in May 2021 to 71% (95%CI 64-77) in October 2021 in Busia; and from 1% (95% CI 0-3) in September 2020 to 63% (95% CI 56-69) in October 2021 in Kilifi. Mixture modelling, suggests adjusted cross-sectional prevalence estimates are underestimates; seroprevalence in October 2021 could be 74% in Busia and 72% in Kilifi. CONCLUSIONS: There has been substantial, unobserved transmission of SARS-CoV-2 in Nairobi, Busia and Kilifi Counties. Due to the length of time since the beginning of the pandemic, repeated cross-sectional surveys are now difficult to interpret without the use of models to account for antibody waning.


Subject(s)
COVID-19 , Pregnancy Complications, Infectious , Antibodies, Viral , COVID-19/epidemiology , Cross-Sectional Studies , Female , Hospitals , Humans , Immunoglobulin G , Kenya/epidemiology , Pregnancy , Prenatal Care , Referral and Consultation , SARS-CoV-2 , Seroepidemiologic Studies , Spike Glycoprotein, Coronavirus
2.
Wellcome open research ; 6, 2021.
Article in English | EuropePMC | ID: covidwho-2046342

ABSTRACT

Policymakers in Africa need robust estimates of the current and future spread of SARS-CoV-2. We used national surveillance PCR test, serological survey and mobility data to develop and fit a county-specific transmission model for Kenya up to the end of September 2020, which encompasses the first wave of SARS-CoV-2 transmission in the country. We estimate that the first wave of the SARS-CoV-2 pandemic peaked before the end of July 2020 in the major urban counties, with 30-50% of residents infected. Our analysis suggests, first, that the reported low COVID-19 disease burden in Kenya cannot be explained solely by limited spread of the virus, and second, that a 30-50% attack rate was not sufficient to avoid a further wave of transmission.

3.
PLoS Comput Biol ; 18(9): e1010390, 2022 09.
Article in English | MEDLINE | ID: covidwho-2021464

ABSTRACT

The widespread, and in many countries unprecedented, use of non-pharmaceutical interventions (NPIs) during the COVID-19 pandemic has highlighted the need for mathematical models which can estimate the impact of these measures while accounting for the highly heterogeneous risk profile of COVID-19. Models accounting either for age structure or the household structure necessary to explicitly model many NPIs are commonly used in infectious disease modelling, but models incorporating both levels of structure present substantial computational and mathematical challenges due to their high dimensionality. Here we present a modelling framework for the spread of an epidemic that includes explicit representation of age structure and household structure. Our model is formulated in terms of tractable systems of ordinary differential equations for which we provide an open-source Python implementation. Such tractability leads to significant benefits for model calibration, exhaustive evaluation of possible parameter values, and interpretability of results. We demonstrate the flexibility of our model through four policy case studies, where we quantify the likely benefits of the following measures which were either considered or implemented in the UK during the current COVID-19 pandemic: control of within- and between-household mixing through NPIs; formation of support bubbles during lockdown periods; out-of-household isolation (OOHI); and temporary relaxation of NPIs during holiday periods. Our ordinary differential equation formulation and associated analysis demonstrate that multiple dimensions of risk stratification and social structure can be incorporated into infectious disease models without sacrificing mathematical tractability. This model and its software implementation expand the range of tools available to infectious disease policy analysts.


Subject(s)
COVID-19 , Communicable Diseases , COVID-19/epidemiology , COVID-19/prevention & control , Communicable Disease Control/methods , Humans , Pandemics/prevention & control , Policy , SARS-CoV-2
4.
BMJ Glob Health ; 7(8)2022 08.
Article in English | MEDLINE | ID: covidwho-1968240

ABSTRACT

BACKGROUND: A few studies have assessed the epidemiological impact and the cost-effectiveness of COVID-19 vaccines in settings where most of the population had been exposed to SARS-CoV-2 infection. METHODS: We conducted a cost-effectiveness analysis of COVID-19 vaccine in Kenya from a societal perspective over a 1.5-year time frame. An age-structured transmission model assumed at least 80% of the population to have prior natural immunity when an immune escape variant was introduced. We examine the effect of slow (18 months) or rapid (6 months) vaccine roll-out with vaccine coverage of 30%, 50% or 70% of the adult (>18 years) population prioritising roll-out in those over 50-years (80% uptake in all scenarios). Cost data were obtained from primary analyses. We assumed vaccine procurement at US$7 per dose and vaccine delivery costs of US$3.90-US$6.11 per dose. The cost-effectiveness threshold was US$919.11. FINDINGS: Slow roll-out at 30% coverage largely targets those over 50 years and resulted in 54% fewer deaths (8132 (7914-8373)) than no vaccination and was cost saving (incremental cost-effectiveness ratio, ICER=US$-1343 (US$-1345 to US$-1341) per disability-adjusted life-year, DALY averted). Increasing coverage to 50% and 70%, further reduced deaths by 12% (810 (757-872) and 5% (282 (251-317) but was not cost-effective, using Kenya's cost-effectiveness threshold (US$919.11). Rapid roll-out with 30% coverage averted 63% more deaths and was more cost-saving (ICER=US$-1607 (US$-1609 to US$-1604) per DALY averted) compared with slow roll-out at the same coverage level, but 50% and 70% coverage scenarios were not cost-effective. INTERPRETATION: With prior exposure partially protecting much of the Kenyan population, vaccination of young adults may no longer be cost-effective.


Subject(s)
COVID-19 Vaccines , COVID-19 , COVID-19/prevention & control , Cost-Benefit Analysis , Humans , Kenya/epidemiology , SARS-CoV-2 , Young Adult
5.
Science ; 374(6570): 989-994, 2021 Nov 19.
Article in English | MEDLINE | ID: covidwho-1526450

ABSTRACT

Policy decisions on COVID-19 interventions should be informed by a local, regional and national understanding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission. Epidemic waves may result when restrictions are lifted or poorly adhered to, variants with new phenotypic properties successfully invade, or infection spreads to susceptible subpopulations. Three COVID-19 epidemic waves have been observed in Kenya. Using a mechanistic mathematical model, we explain the first two distinct waves by differences in contact rates in high and low social-economic groups, and the third wave by the introduction of higher-transmissibility variants. Reopening schools led to a minor increase in transmission between the second and third waves. Socioeconomic and urban­rural population structure are critical determinants of viral transmission in Kenya.


Subject(s)
COVID-19/epidemiology , COVID-19/transmission , COVID-19/virology , COVID-19 Nucleic Acid Testing , Communicable Disease Control , Epidemics , Humans , Incidence , Kenya/epidemiology , Models, Biological , Seroepidemiologic Studies , Social Class , Socioeconomic Factors
6.
PLoS Comput Biol ; 17(7): e1009090, 2021 07.
Article in English | MEDLINE | ID: covidwho-1318307

ABSTRACT

We explore the spatial and temporal spread of the novel SARS-CoV-2 virus under containment measures in three European countries based on fits to data of the early outbreak. Using data from Spain and Italy, we estimate an age dependent infection fatality ratio for SARS-CoV-2, as well as risks of hospitalization and intensive care admission. We use them in a model that simulates the dynamics of the virus using an age structured, spatially detailed agent based approach, that explicitly incorporates governmental interventions and changes in mobility and contact patterns occurred during the COVID-19 outbreak in each country. Our simulations reproduce several of the features of its spatio-temporal spread in the three countries studied. They show that containment measures combined with high density are responsible for the containment of cases within densely populated areas, and that spread to less densely populated areas occurred during the late stages of the first wave. The capability to reproduce observed features of the spatio-temporal dynamics of SARS-CoV-2 makes this model a potential candidate for forecasting the dynamics of SARS-CoV-2 in other settings, and we recommend its application in low and lower-middle income countries which remain understudied.


Subject(s)
COVID-19/epidemiology , Computer Simulation , COVID-19/mortality , COVID-19/transmission , COVID-19/virology , Contact Tracing , Disease Outbreaks , Hospitalization/statistics & numerical data , Humans , Intensive Care Units/statistics & numerical data , Italy/epidemiology , Patient Admission/statistics & numerical data , Physical Distancing , Risk , SARS-CoV-2/isolation & purification , Spain/epidemiology , United Kingdom/epidemiology
7.
Wellcome Open Research ; 2020.
Article in English | ProQuest Central | ID: covidwho-832682

ABSTRACT

Background: Across the African continent, other than South Africa, COVID-19 cases have remained relatively low. Nevertheless, in Kenya, despite early implementation of containment measures and restrictions, cases have consistently been increasing. Contact tracing forms one of the key strategies in Kenya, but may become infeasible as the caseload grows. Here we explore different contact tracing strategies by distinguishing between household and non-household contacts and how these may be combined with other non-pharmaceutical interventions. Methods: We extend a previously developed branching process model for contact tracing to include realistic contact data from Kenya. Using the contact data, we generate a synthetic population of individuals and their contacts categorised by age and household membership. We simulate the initial spread of SARS-CoV-2 through this population and look at the effectiveness of a number of non-pharmaceutical interventions with a particular focus on different contact tracing strategies and the potential effort involved in these. Results: General physical distancing and avoiding large group gatherings combined with contact tracing, where all contacts are isolated immediately, can be effective in slowing down the outbreak, but were, under our base assumptions, not enough to control it without implementing extreme stay at home policies. Under optimistic assumptions with a highly overdispersed R0 and a short delay from symptom onset to isolation, control was possible with less stringent physical distancing and by isolating household contacts only. Conclusions: Without strong physical distancing measures, controlling the spread of SARS-CoV-2 is difficult. With limited resources, physical distancing combined with the isolation of households of detected cases can form a moderately effective strategy, and control is possible under optimistic assumptions. More data are needed to understand transmission in Kenya, in particular by studying the settings that lead to larger transmission events, which may allow for more targeted responses, and collection of representative age-related contact data.

SELECTION OF CITATIONS
SEARCH DETAIL